If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-8w-84=0
a = 2; b = -8; c = -84;
Δ = b2-4ac
Δ = -82-4·2·(-84)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{46}}{2*2}=\frac{8-4\sqrt{46}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{46}}{2*2}=\frac{8+4\sqrt{46}}{4} $
| 4x-3(x+15)=2x+(-6-x) | | x^2=√29 | | 72(2x+1)=90 | | x=3/2+6x+10 | | W(2w-8)=84 | | 72+(2x+1)=90 | | 3(x+1)+4+x=3(x+2) | | 72+(2x+1)=180 | | 230+0.15x=314 | | 2(2w-8)=84 | | 8/10=k-2/9 | | 8=3g+4 | | -150=-15m | | 11x-24-13x=-6 | | 7/9=8/p+3 | | 15x—4x=-55 | | 4y+12y-y=84+y | | n/10=3/4 | | 16y=84-y | | 9/4=2/x | | 4y+12y+y=84-y | | 4y+12y+y=84 | | 5/v=9/10 | | -8(1-6x)=328 | | 4y+12y=84-y | | 5y+8y=84 | | 84=-7(m-4)-7m | | 7-6x-13=12 | | 14y+26y=84 | | 1*4y+2*6y=84 | | 1*4*y+2*6*y=84 | | 7(2v-3)=2 |